

The Cost of Authoring with a Knowledge

Layer

Lichao LI, Judy KAY
School of Information Technologies,

The University of Sydney, NSW 2006, Australia
{lli1, judy}@it.usyd.edu.au

Abstract. We have recently added a knowledge layer to a learning tool, Assess,
developed to help students develop programming skills. This paper describes the
authors’ view of the new Assess and an evaluation of the authoring interface. We
discuss the advantages of adding a knowledge layer and report the study of the effort of
authoring.

1 Introduction

Many adaptive hypermedia (AH) [1] educational systems exist today, such as ELM-ART [2],
WebTutor [3], INSPIRE [4] and TANGOW [5]. An advantage of an adaptive teaching system
over others is that if offers a personalized learning environment and/or learning experience.
Moreover, such systems are relatively simple to construct compared to traditional Intelligent
Tutoring Systems. However, from an authoring perspective, an efficient AH is not at all
simple to design [6]. There has been considerable work towards the support of powerful and
flexible authoring for authors of AH, such as the LAOS [6] and MetaLinks [7].
 In this paper, we present Assess [8], a programming education system that facilitates
student self-evaluation and provide adapted learner feedback. Our research is primarily
concerned with the addition of a knowledge layer to the system so that students’ knowledge
can be modeled and more intelligent feedback on learner’s progress can be provided. In this
paper, we discuss in detail the authoring of teaching material in the system. For more details
of the full system and evaluations, from a student perspective, see [8].

The following section provides a brief overview of Assess from the student
perspective. Section 3 describes the process of authoring of exercises in the system. Section
4 describes evaluations and Section 5 is conclusion.

2 Assess: A Self-evaluation Tool

The work reported here was conducted in the context of teaching/learning programming in
C and Java in our undergraduate subject, Software Development Methods I, which is a
second year programming course that aims to teach programming in C in a UNIX
environment.

In Assess, exercises for self-evaluation take the form of tasks. Each task has a
programming problem that students need to answer. The system allows students to provide
solutions to these problems and self-evaluate their solutions against a set of marking criteria
provided by authors. More importantly, it provides students with example solutions to assess.

They are normally not the ‘perfect’ solutions, but they do provide students some ideas to
think about and evaluate. These example solutions have been pre-assessed by task authors.
The student is meant to evaluate them as she did for her own solutions. Her assessment is
then compared to the tutor’s assessment of the same example solution. The comparison
gives the student feedback on: how the teacher marked the example, the difference between
the teacher’s assessment and the student’s assessment and why the teacher assessed it that
way. This information is used to update the system’s belief of students’ learning progress,
which can be viewed in the student’s user profile. Our system’s current approach to student
assessment is quite unique, different from other existing systems, such as CourseMaster [9]
and InSTEP [10], both of which automatically evaluate students’ codes and provide instant
feedback. The whole design was intended to help students reflect on code, taking the
perspective defined by the criteria.

The process of student self-evaluation is shown in Figure 1. This system was used in
2004 in the Software Development Method I course. We recognised that there was a lack of
knowledge representation in the system, thereby preventing intelligent and informative
feedback to students. To overcome this limitation, we added a knowledge layer to Assess
(See Figure 2), so that all the ad-hoc elements were replaced by a systematic knowledge
layer that defines the learning objectives, user model components and domain ontology. To
accommodate this new layer, the process of task authoring in Assess was changed
considerably. In this paper, we present the new task creation process and its evaluation.

Figure 1 The Old Student Self-evaluation Process Figure 2 The New Student Self-evaluation Process

3 Task Creation with a Knowledge Layer

With the inclusion of a knowledge layer, we need to set up the learning objectives in the
system. These objectives are concepts to be taught/learned, defined by teachers according to
the learning outcome requirements. They are what the system attempts to teach and are used
to specify teaching/learning goals of individual tasks. Moreover, they also define the
knowledge that the system tries to model each student as knowing or not in the student’s
learner model. The addition and removal of the objectives is achieved using a web interface,
as shown in Figure 3. After defining these objectives, there are three stages to follow to
author a task in Assess:

Stage One. Create task statement and associate learning concepts;
Stage Two. Edit marking criteria and;
Stage Three. Create example solutions.

Figure 3 Concept Editing Inter face (The left side of the inter face shows the concepts that already exist
in the system. They are organised into different predefined categor ies. The top r ight par t of the screen
allows new concepts to be added. Each new concept must be selected from a predefined category. The

bottom r ight par t of the inter face allows concepts to be removed from the system.)

In the first stage (see Figure 4), an author provides the problem statement (i.e. the

task that student needs to solve) and, optionally, a skeleton answer to help the student. They
also need to indicate the difficulty of the problem and specify whether to force the student
to save and assess their own answer before viewing the example solutions. More
importantly, the author must relate the task to relevant learning objectives. Each chosen
learning objective represents a teaching/learning goal of the task. A task must have at least
one goal associated with it to denote what it aims to teach.

The second stage in task creation is the editing of marking schemes. See Figure 5. A
default set of marking schemes is automatically generated based on the teaching goals for
the task. As a result, when students assess their own solutions and our example solutions
with them, they should concentrate on the task’s learning goals. However, as the
automatically generated marking schemes’ criteria are not always meaningful, we allow
them to be edited.

Stage Three involves creating, editing and assessing example solutions. A new
example can be created at this stage. The author can edit the example solution’s marking
schemes. All example solutions of a task share a same set of marking schemes that were
created in Stage One and Two. However, it is possible for each solution to have additional
marking schemes. This means that each task has core teaching goals but each example
solution can have additional elements. Figure 6 exhibits how additional marking schemes
can be created and removed for example solutions. However, the task’s main learning
concepts cannot be edited here; as noted above, these are core to the whole task and can
only be altered at the task level, i.e. at Stage One and Two.

Figure 4 Stage One of the New Task Creation Process with Teaching Goals Selection (The top left par t
of the inter face provides a text box for authors to type the problem statement. To its r ight, the authors

can provide an optional skeleton answer . At the bottom of the inter face, authors can select learning
goals of the task. The bottom left box contains all the learning objectives available in the system that
have not been associated with the task. The box to its r ight contains the learning goals of this task. A

task cannot have duplicated learning goals.)

Figure 5 New Task Creation Stage Two, Editing of Marking Schemes (All marking schemes are

displayed at the bottom of the page, with their cr iter ia to the left and their marking options to the r ight
in the pop-up menus. When an author edits a scheme, the scheme will be taken off from the bottom

section and appear at the top section of the inter face. I ts cr iter ion will be displayed in the text box at the
left and its marking options are displayed in the text boxes to the r ight, so they can be edited. Once the

author finishes author ing, she can save the changes.)

After the marking schemes are updated for an example solution, an author can

assess the solution with the complete set of marking schemes and provide an explanation
for the assessment (Figure 7). When a student assesses this example solution, her

assessment is compared with the author’s assessment. The discrepancy indicates how well
she understands the learning concepts associated with the marking schemes, and is recorded
in her individual learner model to provide adaptive learning feedback. We can illustrate this
with an example: A concept, Flow of Control – While Loop, is selected to be a learning
objective of a task and its marking scheme is created automatically. The marking scheme’s
criterion is “The while loop used in the solution code is correct” and its marking options are
true and false. When a student assesses an example solution with this scheme, she thinks
the loop used in the code is correct but the author of the task thinks otherwise, this shows
the student cannot recognise the elements that make up a correct while loop and so does not
understand this learning objective yet. This information is recorded in her learner model.

Figure 6 Editing Example Learning Concepts for One Example Solution for One Task (The top left
section shows the main learning/teaching objectives of the task. The top r ight section displays the

learning goals of this par ticular example solution, in this case, Dynamic Structures in C – Linked List
Creation. They can also be removed from here. The bottom par t of the inter face allows additional

learning goals be added and corresponding marking schemes to be created.)

Figure 7 Assessing Example Solutions (The inter face allows the example solution in the top left text box
to be edited. In the top r ight section, the author can rate the code against the marking schemes. She can

also provide an optional explanation in the text box at the bottom.)

When the author finishes creating and assessing example solutions, and is content

with the entire task, she can publish it for students to view.

4 Evaluation

We have conducted a preliminary experiment on the author’s perspective of Assess. It was
designed to assess the intellectual effort and time involved in the creation of tasks in Assess
as well as the usability of interfaces. In particular, we want to ask “What effort and time is
involved in entering a new task into Assess?” To answer this question, we evaluated:

• How effective and usable are the interfaces?
• How quickly and accurately first-time authors can create a task?

We selected five1 participants from our computer science honours and fourth year
students to take part in this user trial. They were from different backgrounds. Participant 1
was an experienced tutor, but had not tutored Software Development Methods I before.
Participants 2 and 3 were tutors of the subject in 2004. Participant 4 has never tutored and
Participant 5 was a tutor for only a brief period in 2003. Participant 3 was the teaching
assistant for SDM in 2004. All participants were in the top 15% of the class when they
completed the course, so they were all familiar with it. Though this is clearly a highly
qualified, technically elite group, it represents the class of users qualified to define and enter
tasks for the subject.

At the start of a session, we demonstrated Assess from a student’s perspective to
show how the system works. This allowed participants to get some insight into Assess, but
did not bias the experiment by letting them see what they would need to do. We also
supplied the participants with materials they need to put into the system. This included a
problem statement and two example solutions that were taken from the original Assess
system. They were asked to re-create this task in Assess. They were also told the task’s and
example solutions’ teaching goals. We did not ask the participants to create new tasks
because creation of teaching materials is always a time consuming process and requires
deep understanding of the big picture course goals. We were not trying to determine how
people tackle the more intellectually demanding task of choosing a task and providing
solutions. We had also pre-typed the teaching materials on a text editor, so participants
could simply cut and paste them into the interface. This reflects a typical scenario of Assess
task creation where the lecturer has set an exam question, graded student answers and then
developed and tested example solutions. In such a case, all the materials made available to
participants would have been complete at the time the lecturer added the task to Assess.

For the experiment, participants were asked to create a task in the system with the
supplied material and grade the teaching material creation process in terms of its usability
separating the intellectual effort of it from the ease of use of the interfaces. Participants
were asked to think aloud so we could take note of any difficulty they encountered.

All participants completed the user trial successfully. The intellectual effort required
for each stage of the task creation was rated from 1 (minimal effort) to 6 (a lot of effort).
Participants’ ratings are illustrated in Figure 8, which shows only modest intellectual effort
is required. Participant 4 considered Stage One and Two required a lot of effort.
Participants tended to consider Stage Two required the highest (or equal highest) level of
intellectual effort as creating questions that can properly evaluate students’ understanding of
a marking criterion’s corresponding learning concept is not an easy process. In terms of

1 As Recommended for think-aloud usability evaluations: How many users to test (Jakob Nielson’s Alterbox),
http://www.useit.com/alertbox/20040719.html, 22 Oct, 2004

interface usability, most participants have positive opinions. Participant 3 rated the interface
in Stage Two not easy to use because the participant thought there was not enough guidance
for authors (See Figure 5). Participant 5 rated the interface of Stage One not very usable and
suggested that there was too much information presented (See Figure 4). Overall, the new
functionalities required by the knowledge layer did not increase the intellectual effort
required to create a task greatly or introduce too much complexity to the interfaces.

�
�
�
�
�
�
�

�	� ��

���

� � � � �
�������

����� ����� ������� ��� �� ����� !#"�
�$� ��
%�&��� ��'("��&)+*,����"�� �
#�

- � "/.#�+�
- � "/.#� �
- � "/.#� �
0 �����&"�

Figure 8 I llustration of Par ticipants’ Rating of Intellectual Effor t Required for Each Stage of the Task

Creation Process (1 = minimal, 6 = a lot of effor t)

1 2 3
4 5

6 7 8
9:
;

6 7 8
9:
<

6 7 8
9:
=

> ?:@8
AA

B

5
1 B
1 5
2 B

CED FHGJI&FKD LNM/O

PQM�G�R
SUT�VXW GYM

C V M[Z]\^R_G V
T D `	LHa(R_`$b#GYM�M^CED FKD L W

SYT�V#W GH1
SYT�V#W G 2
SYT�V#W G 3
ced G
R V�f f

Figure 9 I llustration of Different Par ticipants’ Timing of Each Stage of the Task Creation Process

Since this was a think-aloud evaluation, timing data must be interpreted cautiously.

However, it gives an indication of the effort and time involved and, taken with the
observations of participants, is valuable for establishing indicative times for task creation.
The time each participant spent in different stages of the task creation process is listed in
Figure 9. All but one participant finished creating the task within 15 minutes. It took the
first participant 19 minutes to finish as it was the first user trial run and the participant gave
considerable feedback on the experimental procedure during the user trial. Participants 2
and 3 took a shorter time than the others because they were familiar with the course
concepts as they had been tutors of the subject as would be the norm for a typical task
author. Stage Three slowed for all participants because there were more functionalities
involved and more interfaces to view. It is to be noted here that the overall time is not only
the sum of time the participants spent on the four stages. It includes also time that

participants spent reading instructions on the tutor home page and task home, which are not
part of any specific stage. Of course, it also included any time talking to the observer.
5 Conclusion

We have presented Assess, a student self-evaluation tool, and explained the exercise
authoring process of the system with a consistent knowledge layer. We also described a user
trial, with results showing that:

1. The intellectual effort required to enter a new task to Assess is modest and the
interfaces that allow the creation of a new task are relatively usable;

2. The entire authoring process in Assess takes about 15 minutes, which again shows
the effort and time involved, introduced by the knowledge layer, are minimum.

They indicate that the new knowledge layer adds only modest complexity to the task of
authoring teaching materials in Assess. At first, one might imagine that the addition of a
knowledge layer to a conventional learning tool might require more effort from task authors.
From our experience, it seems that the knowledge layer may actually reduce the work of
defining a new task and improve the quality of the task as the learning objectives are
explicit so helping authors concentrate on what they want students to learn. Moreover, the
marking criteria in the new Assess system are automatically generated and they correspond
to the teaching/learning objectives of the task. This means that authors do not need to create
the questions that test the learning objective for the task and avoids the risk of forgetting to
include them. Furthermore, the knowledge layer makes it feasible to provide learners and
authors with learner models that capture learning progress, supporting reflection.

References

[1] Brusilovsky, P. (2002) Adaptive hypermedia, User Modeling and User Adapted Interaction, Ten Year

Anniversary Issue 11 (1/2), 2002. 87-110.
[2] Brusilovsky P., Schwarz E., and Weber G. (1996) ELM-ART: An intelligent tutoring system on World

Wide Web. In Frasson, C., Gauthier, G., and Lesgold, A., eds., Proceedings of the Third International
Conference on Intelligent Tutoring Systems, ITS-96. Berlin: Springer. 261-269.

[3] Pérez T.A., Gutiérrez J. (1996) WebTutor, Un sistema Hipermedia Adaptativo para la educación en
WWW, Actas del V Congreso Iberoamericano de Inteligencia Artificial, IBERAMIA'96. Cholula,
Puebla, MÉXICO, 1996.

[4] Grigoriadou, M., Papanikolaou, K., Kornilakis, H., & Magoulas, G. (2001) INSPIRE: An INtelligent
System for Personalized Instruction in a Remote Environment. In P. D. Bra, P. Brusilovsky, & A. Kobsa
(Eds.), Proceedings of Third workshop on Adaptive Hypertext and Hypermedia, July 14, 2001.
Sonthofen, Germany, Technical University Eindhoven. 13-24.

[5] Carro R., Pulido E., Rodríguez P. (1999) Task-based Adaptive learNer Guidance On the WWW: the
TANGOW System, Second Workshop on Adaptive Systems and User Modeling on the Web, en la Eighth
International World Wide Web Conference. Toronto, Canadá. Mayo 1999.

[6] Cristea A. (2004) Authoring of Adaptive Hypermedia; Adaptive Hypermedia and Learning
Environments. Book chapter to appear in "Advances in Web-based Education: Personalized Learning
Environments", Sherry Y. Chen and Dr. George D. Magoulas (eds.). IDEA Publishing group.

[7] Murray T., (2002) MetaLinks: Authoring and affordances for conceptual and narrative flow in adaptive
hyperbooks. International Journal of Artificial Intelligence in Education, 13 (1).

[8] Li L., Kay J., (2005) Learner Reflection in Student Self-Assessment, TR 568, School of Information
Technologies, The University of Sydney, ISBN 1864877170.

[9] CourseMaster. (17 May, 2005). CourseMaster [Online]. School of Computer Science & IT, The
University of Nottingham, UK., Available: http://www.cs.nott.ac.uk/CourseMaster/cm_com/index.html

[10] Odekirk-Hash, E. (2001). Providing Automatic Feedback To Novice Programmers. Unpublished MA,
The University of Utah, Utah.

