Модель навчального Web-контенту Tree-Net як основа для інтеграції керування знаннями і безперервним навчанням
Дисертації Тезаурус FreshKnowledge CMS Semantic Web Tree-Net Web 2.0 Агенти Адаптивність АПЕПС Аспірантам Безперервне навчання Веб будівництво Інтелектульні СДН Керування знаннями Керування контентом Компетенції Контроль знань Конференції Модель учня Моделювання знань Мотивація Наука Наука і віра Проекти ПТМ Ролики про вічне Сайти Сенс життя Сервіси Статті Суспільство і віра
| Лабораторія СЕТ | Дослідження, статті, розробки | Публікації | Модель навчального Web-контенту Tree-Net як основа для інтеграції керування знаннями і безперервним навчанням ![]() ![]() Модель навчального Web-контенту Tree-Net як основа для інтеграції керування знаннями і безперервним навчанням
Модель навчального Web-контенту Tree-Net як основа для інтеграції керування знаннями і безперервним навчанням Титенко, С. В. Модель навчального Web-контенту Tree-Net як основа для інтеграції керування знаннями і безперервним навчанням / С. В. Титенко, О. О. Гагарін // Системні дослідження та інформаційні технології. – 2009. – № 1. – С. 74–86.
ВступУкраїна стоїть перед викликом впровадження і підтримки освітніх процесів за принципом «навчання впродовж усього життя». В умовах «інформаційного вибуху» і бурхливого розвитку інформаційних технологій, коли щорічний приріст знань складає 4-6%, а фахівець отримує до 50% знань після закінчення навчального закладу і майже 30% загального обсягу свого робочого часу мусить витрачати на поновлення професійних знань [1], питання побудови ефективних систем підтримки безперервного навчання набуває особливої значущості. Дедалі більшого значення набуває корпоративне навчання. Найвищим капіталом організації є співробітники, а їх особистий розвиток і інтелект – найвищою технологією. У свою чергу останнім часом велика увага приділяється також технологіям управління знаннями (УЗ) організації у контексті навчання [2, 3]. Знання організації – це різноманітна інформація, необхідна для підтримки основних бізнес-процесів організації на високому рівні, а також для адекватного реагування на різноманітні впливи [4]. Управління знаннями фокусується на тому, як організація визначає, створює, здобуває, розподіляє і застосовує знання. Як корпоративне навчання, так і управління знаннями мають справу із обміном знаннями і створенням співтовариств, в яких розповсюджуються знання. Дистанційне навчання в контексті безперервної освіти і управління знаннями беруть свій початок від однакових задач: навчання, покращена здатність виконувати робочі завдання, здатність приймати ефективні рішення та позитивно впливати на навколишнє співтовариство. Пошуки шляхів синтезу обох процесів набувають значущості і мають потенціал оптимізувати процеси, пов’язані із знаннями, інтегруючи задачі управління знаннями і навчання. Не зважаючи на спільні риси, дистанційне навчання у рамках підходів на базі класичних систем дистанційного навчання (СДН) і управління знаннями мають характерні відмінності. Узагальнюючи, слід вказати основні різниці у використанні і ставленні до знань у цих областях. Управління знаннями носить динамічний характер, подає актуальні у часі знання, проте часом ці знання не достатньо добре структуровані і не підходять для повноцінного безпосереднього використання у навчальних курсах. Натомість дистанційне навчання фокусується на поданні опрацьованих і добре структурованих знань за допомогою навчальних планів, які часто носять статичний характер. Недоліком тут є те, що такі знання часом втрачають свіжість і актуальність, характерну для задач управління знаннями. Тому архітектура класичних систем дистанційного навчання погано задовольняє вимоги до процесів управління знаннями. Такі провідні системи дистанційного навчання як WebCT і Blackboard створені у більшій мірі для підтримки класної діяльності, аніж для незалежних досліджень або самонавчання [2]. Експерти з управління знаннями, зазначаючи неефективність стандартних рішень систем дистанційного навчання для УЗ [2, 3, 5], рекомендують активно збагачувати ці системи виконанням ряду задач. Аналізуючи ці рекомендації, можна зазначити наступні додаткові вимоги до функціональності СДН у контексті УЗ: 1) робити експертів організації більш «видимими» один для одного, підтримуючи експертні співтовариства для обміну знаннями і досвідом; 2) застосовувати моделі компетенцій і профілів спеціалістів для удосконалення навчальних процесів та співробітництва для навчання; 3) єднати навчальні матеріали з реальними і актуальними сховищами знань; 4) підтримувати експертні співтовариства у створенні якісних навчальних об’єктів. У свою чергу слід виділити наступні проблеми, характерні для застосування підходів управління знаннями для організації навчання: 1) структурування знань системи УЗ для забезпечення подальшої можливості використання цих знань у навчальних цілях в рамках навчальних програм; 2) генерація навчальних курсів і персональних навчальних середовищ на основі ресурсів системи УЗ. Доцільним для реалізації синтезу управління знаннями і безперервного навчання є застосування концепції, у якій управління знаннями відіграє роль сховища, або репозитарію, а навчальний процес є процесом використання цього репозитарію. Основною сутністю, матеріалом, яким маніпулюють СДН і системи УЗ є контент. Під контентом (від англ. content) прийнято розуміти будь-яке змістовне наповнення інформаційного ресурсу – тексти, графіка, мультимедіа. У Web-сайтах для кінцевого користувача контент організується у вигляді сторінок засобами гіпертекстової розмітки. Бурхливий розвиток Інтернету призвів до появи багатьох програмних систем, які автоматизують управління інформацією Web-сайтів і застосовують різноманітні методи організації і навігації Web-контентом, такі як каталогізація і рубрикація контенту, технології міток (тегів), організація меню, розділів і підрозділів сайту. Такі системи управління контентом, або CMS (content management systems) широко представлені на ринку. Навчальний Web-контент – це контент освітніх сайтів, порталів дистанційного навчання та інших Інтернет-систем, який використовується для передачі знань користувачам. У зв’язку із специфічними дидактичними завданнями СДН подання навчального контенту не може бути в повноті задоволене звичайними CMS-системами. У зв’язку з цим набули поширення спеціальні класи систем, які служать для управління навчальним контентом і організації навчання: CMS – courseware management systems, системи управління курсами, LMS – learning management systems, системи управління навчанням, LCMS - learning content management systems, системи управління навчальним контентом, а також СДН – системи дистанційного навчання (термін СДН характерний для вітчизняних систем). Модель освітнього процесу за вимогами безперервного навчання на базі управління знаннями повинна містити етап побудови і адаптивної підтримки релевантного навчального курсу [6]. Підтримку адаптивності слід реалізовувати на основі інтелектуальності контенту, яка закладається на етапі його створення [7]. В свою чергу інтелектуальний контент має стати центральною сутністю для управління знаннями в контексті синтезу СДН і УЗ. Класичні системи дистанційного навчання, такі як Blackboard, Learning Space, WebCT, Moodle та ін., не здатні забезпечити адаптивність процесу навчання, яка є однією з ключових вимог безперервної освіти [6]. У свою чергу в роботах, що стосуються інтелектуальних і адаптивних навчальних систем пропонуються розвинені моделі контенту і предметної області [8-10], проте тут не приділяється достатньої уваги процесу управління корпоративними знаннями в контексті безперервного і професійно-орієнтованого навчання [6], а також питанням останніх тенденцій у сфері управління контентом Web-сайтів [11]. У зв’язку з цим пропонується модель контенту, як складова інтелектуальної системи безперервного навчання [12, 13], яка у поєднанні з такими компонентами як понятійно-тезисна модель [14], модель контролю і діагностики знань, модель студента, модель професійних компетенцій, модель освітнього запиту і модель педагогічного процесу покликані забезпечити функціонування Web-системи безперервноого навчання за концепцією, в якій управління знаннями відіграє роль підготовки репозитарію або порталу знань, а організація навчання відбувається на основі технологій використання цього репозитарію у якості генератора курсів і персонального навчаючого середовища [15]. Постановка задачіСтавиться завдання розробки моделі Web-контенту, яка стане підґрунтям для побудови адаптивної системи безперервного навчання через Інтернет в контексті управління знаннями. Модель повинна задовольняти наступні вимоги:
Основні характеристики моделі Tree-NetTree-Net – ієрархічно-мережева модель даних, яка є основою для формалізації і структурування інформації освітніх порталів для підтримки безперервного навчання. Tree-Net являє собою сукупність двох ієрархічних структур – дерева елементів контенту і дерева тематичних груп. Між елементами контенту можуть встановлюватись бінарні зв’язки, що дозволяє окрім ієрархії пов’язати контент у мережу на основі асоціативності. Дерево контенту вказує на фізичне розташування контенту, це основна навігаційна модель контенту сайту. Роль дерева тематичних груп – подати ієрархію тем предметних областей. Елементи контенту можуть бути віднесені до однієї чи більше тематичних груп. Таким чином Tree-Net забезпечує як загальне структурування Web-контенту освітнього порталу, так і подання його семантики завдяки моделюванню предметних областей, що служить для інтелектуалізації навчальної системи. Схематично модель контенту Tree-Net зображено на рис.1.
![]()
Рис.1. Схематичне зображення Tree-Net моделі: дерево контенту і дерево тематичних груп.
Ієрархічна структура контентуІєрархічно-мережева модель даних Tree-Net є основою для формалізації і структурування інформації для Інтернет-систем, в тому числі для освітніх порталів. Опишемо ієрархічну складову структури контенту Tree-Net-моделі. Елементарним елементом контенту є подання, позначається – vi. Подання відповідає одній Web-сторінці сайту. Зауважимо, що завданням Web-сторінки є подання логічно завершеної порції контенту з точки зору її смислу, тоді як основні налаштування візуального оформлення задаються централізовано для усього порталу за допомогою відповідних Web-технологій. Множина усіх елементів контенту:
V = {vi}, де i=1..nV
Ієрархічна структура контенту визначається тим, що кожен елемент може мати дочірні елементи, які в свою чергу також можуть мати дочірні елементи і так далі. Позначається відображенням:
Ch : V → 2V
Таким чином множина безпосередніх дочірніх елементів для даного елемента контенту a позначається:
Ch(a), a
![]() Відповідно до ієрархічної структури кожен елемент має один батьківський елемент, що задається відображенням:
F : V → V
При цьому у вершині ієрархії знаходиться абстрактний елемент v=default. Таким чином F(v) позначає батьківський елемент для елемента контенту v.
Множина усіх елементів-нащадків даного елемента e
Desc(e), e
![]() Семантичний блок контентуСемантичні блоки контенту служать для організації контенту багатопредметного Web-порталу і є одним із засобів групування елементів контенту з метою моделювання різноманітних предметних областей. Семантичний блок – це множина елементів контенту, які мають логічну і структурну єдність, вони мають єдине джерело походження, наприклад одне авторство, і подають одну тему. Сюди можна віднести готові статичні курси, контент яких завантажено до системи. Фізично семантичний блок контенту є деякою гілкою у дереві контенту. Для створення нового семантичного блоку елемент, який стане його вершиною, спеціальним чином позначається як «блок», тоді усі його нащадки будуть віднесені до даного блоку. У такий спосіб створюється семантичний блок на основі деякої гілки у загальному дереві контенту. Приклад семантичних блоків зображено на рис.2.
![]()
Рис.2. Приклад семантичних блоків. Елементи, позначені як блок, стають частиною нового семантичного блоку разом із усіма їх нащадками.
Множина елементів семантичного блоку визначається оператором Desc(v), де v – вершина блоку у дереві контенту. Бінарні мережеві зв’язкиМережева структура контенту полягає у тому, що кожен елемент, окрім зв’язків ієрархії, може мати додаткові зв’язки із іншими елементами. Семантична роль таких мережевих зв’язків – відношення асоціативності. Таким чином, кожен елемент має сукупність пов’язаних із ним елементів. Така мережева структура задається відношенням:
Дане відношення задається квадратною (nV
![]()
Вважаємо, що елемент v може мати прямі, обернені і взаємні зв’язки з іншими елементами. При цьому взаємний зв'язок може бути симетричним. Прямий зв'язок елемента vk з елементом vl існує якщо (vk,vl) Різні групи елементів, з якими даний елемент vk пов'язаний будемо позначати наступним чином:
![]() Псевдоніми і повторне використання контентуТенденції примноження інформації і знань ускладнюють однозначну каталогізацію інформаційних об’єктів. Одним з ефективних методів гнучкого управління контентом і побудови ефективної навігаційної схеми Web-сайту є технологія псевдонімів у моделі Tree-Net. Основним завданням цього методу є забезпечення повторного використання вже існуючого контенту для нових специфічних цілей. Відбувається це завдяки можливості розташувати вже існуючий в системі елемент контенту в іншому місті ієрархії. Подібне завдання виникає, наприклад, у випадках, коли цілий розділ або окрема сторінка певного навчального курсу розкриває деяку тему або питання у контексті іншого навчального курсу. Тут включення готової ділянки навчального контенту до нового курсу дасть змогу спростити і прискорити процес його формування. Щоб запобігти ситуацій, коли навчальна ділянка, позбавлена свого контексту, втрачає дидактичну ефективність, дану функцію слід застосовувати для таких елементів контенту, які у рамках предмету, що в них розглядається, володіють логічною завершеністю. Сутність застосування технології псевдонімів полягає у встановленні відношень між двома елементами контенту, один з яких стає джерелом даних, а інший – їх одержувачем. Відношення псевдонімів описується наступним відображенням:
Таким чином кажемо, що елемент vk є псевдонімом елемента vl у тому разі, коли (vk,vl) Відношення «псевдонім» розділяється на такі типи: посилання, статична копія, динамічна копія, статична вибірка, динамічна вибірка. Тип відношення керує тим, які саме властивості елемента-джерела отримає елемент-одержувач. Сукупність типів являє собою множину:
Типізація відношення псевдонімів задається відображенням:
Розкриємо роль кожного з типів. Відношення «посилання»: AType(Ai)=aLink – елемент-одержувач приймає адресу (URL) елемента-джерела, тому фактично є посиланням на нього. Це відношення дає можливість забезпечити навігацію до вже існуючого елементу контенту через інше місце в ієрархії. Таким чином елемент-одержувач стає посиланням на джерело, тобто відсилає до іншого місця у ієрархії контенту. Статична копія: AType(Ai)= aCopy – усі атрибути копіюються в момент створення, після чого якісний зв'язок із джерелом не потрібен. Від елемента-джерела використовується лише інформація про бінарні і групові зв’язки. Зміна атрибутів статичної копії відбувається безпосереднім чином і не має зв’язку із елементом-джерелом. Статична вибірка: AType(Ai)= aSelect – Копіюється елемент як статична копія і його нащадки: для елемента копії створюються нащадки - статичні копії усіх нащадків елемента-джерела. Динамічна копія: AType(Ai)=aDCopy – служить як постійно актуальна копія деякого елемента без його нащадків. Атрибути такого елементу безпосередньо видобуваються із елементу-джерела в кожен момент звернення. Допускається часткова зміна атрибутів динамічної копії із можливістю використання поновлювальних значень атрибутів джерела. Динамічна вибірка: AType(Ai)=aDSelect – служить як постійна копія деякої гілки. Така вибірка є постійно актуальною копією елемента-джерела і всіх його нащадків, усі ієрархічні зміни гілки-джерела мають вплив на вибірку. Передбачається можливість зміни атрибутів і налаштування елементів і структури динамічної вибірки. Для зміни атрибутів в нащадках слід повторити/змінити ієрархію, створюючи елементи, починаючи від вершини динамічної вибірки, і внести необхідні значення атрибутів. При цьому створені елементи, нащадки динамічної копії, можуть самі бути динамічними або статичними копіями. У такий спосіб виконується гнучке налаштування вибірки. Тематичні групи контенту і мережеві зв’язки на основі групТематичні групи служать для організації різноманітних міжпредметних і внутрішньопредметних зв’язків між елементами контенту. Тематичні групи використовується для моделювання предметних областей, каталогізації, групування і вибірки асоціативного контенту. Організація тематичних груп відбувається у ієрархічній структурі. Це дозволяє вибудовувати таксономію предметних областей. Кожен елемент контенту може брати участь у довільній кількості тематичних груп. На основі тематичних груп визначаються зв’язки асоціативності між елементами контенту. Множина G вказує на тематичні або асоціативні групи, в яких можуть брати участь елементи контенту.
G = {g1, …, gnG}, де nG – кількість тематичних груп контенту
Організація тематичних груп відбувається у ієрархічній структурі. Ієрархія груп визначається відображенням, яке ставить у відповідність кожній групі gi множину її дочірніх елементів:
ChG: G →2G
Зауважимо, що кожна тематична група може мати лише одну батьківську групу. Відображення FG задає батьківство тематичних груп:
FG: G → G
Аналогічно, множина усіх груп-нащадків даної групи g
Генеалогічна лінія групи g – це множина усіх її пращурів, визначається оператором AncG(g), g
AncGG (A)=
![]() ![]() ![]() Елементи контенту і їх зв'язок з тематичними групамиКожен елемент контенту може брати участь у довільній кількості тематичних груп, що задається відображенням:
GV: V→2G
Матриця GVw=||gvwij|| задає це відношення, разом з тим зберігаючи міру відповідності або релевантності даного елемента групі. Так рядки матриці ||gvwij|| відповідають елементам контенту v1,v2,…,vnV, а стовпці – групам g1,g2,…,gnG . Таким чином для кожного елемента vi (і-й рядок) задається множина груп {gj} (стовпці), в яких даний елемент бере участь, при цьому ненульові елементи матриці gvwij вказують на міру відповідності елемента групі. У свою чергу зв'язок множини усіх елементів контенту і групи, до якої вони безпосередньо належать задається відображенням:
VG: G→2V Дане відображення також задається згаданою матрицею GVw=||gvwij||. Введемо оператор, за допомогою якого будемо визначати множину елементів контенту, кожен з яких бере участь хоча б в одній групі із заданої множини груп. Тобто елементи контенту, що належать множині груп A ![]() VGG(A)= {v: GV(v) ∩ A
![]() Множину елементів контенту, які беруть участь у групі g або в деякій із її нащадків будемо називати контентом гілки g:
![]()
Множину елементів контенту, які беруть участь хоча б в одній групі із множини A
![]() Тематично-асоціативні елементи контентуНа основі тематичних груп ми можемо визначати зв’язки асоціативності між елементами контенту. Виділяємо різні області асоціативності для елементу контенту: найближче коло тематично-асоціативного контенту елементу; помірне, або заглиблююче, коло тематично-асоціативного контенту; широке, тобто узагальнююче, коло тематично-асоціативного контенту.
Найближче коло тематично-асоціативного контенту елементу a, a
![]()
Помірне (заглиблююче) коло тематично-асоціативного контенту елементу a, a
![]()
Широке коло (узагальнююче) тематично-асоціативного контенту елементу a, a
![]()
Повне коло тематично-асоціативного контенту елементу a, a
![]() Величину яка вказуватиме на міру асоціативності двох елементів контенту vk i vl називатимемо асоціативною відстанню і позначатимемо Diskl. Асоціативна відстань (або тематично-асоціативна відстань) Disij служить для впорядкування, або сортування асоціативних елементів. Розрахунок цієї величини, окрім структури груп, має також врахувати бінарні зв’язки між елементами. Асоціативна відстань допоможе вибирати із усієї сукупності тематично-асоціативного контенту групи найближчих асоціативних елементів із заданою кількістю елементів в групі. Засоби побудови персонального навчаючого середовища на основі Tree-NetОсновою для підготовки персонального навчаючого середовища є визначення інтересів користувача і подальший відбір необхідного контенту. Розгалужена структура Tree-Net дає можливість гнучко управляти інформацією і створювати стратегії персонального подання контенту користувачу в залежності від його потреб. Тут актуальним виявляється задача пошуку асоціативного контенту до деякої сторінки у випадку, коли інформація цієї сторінки цікавить користувача. Знаходження асоціативних елементів контенту даної Web-сторінки відбувається на основі джерел асоціативності. Нижче наведено джерела асоціативного контенту сторінки по порядку їх значимості:
Набір елементів контенту, отриманий в результаті пошуку асоціативних сторінок можна подати структуровано за допомогою оператора Roots.
Робота оператора Roots TN-моделі полягає у пошуку у множині V′ ![]()
Рис.3. Вибірка елементів і визначення вершин оператором Roots.
Новоутворені піддерева можуть розцінюватись як основа для персональних навчальних курсів та за допомогою відношень псевдонімів: посилань, копій і вибірок, – можуть подаватись окремо у якості персонального гіпермедіа середовища. ВисновкиЗапропонована модель навчального Web-контенту Tree-Net дозволяє комплексно підійти по вирішення завдань навчання і управління знаннями організації. Tree-Net підтримує еволюційність у створенні порталу – дає можливість розробляти і накопичувати навчальний матеріал поступово, при цьому функції системи будуть доступні на кожному етапі. Таким чином вирішується проблема «всеосвіченості», характерна для випадків застосування жорстких моделей подання знань. Технологія вибірок і псевдонімів дозволяє повторно використовувати ділянки навчальних матеріалів для нових курсів і навчальних процесів. Tree-Net забезпечує гнучке конструювання нових навчальних курсів і програм на основі вже існуючого в системі контенту. Семантична складова і дерево тематичних груп дає можливість вибудовувати ієрархію предметних областей. Використання цих даних дає можливість виконувати вибірку, фільтрацію, категоризацію і упорядкування навчального матеріалу на основі семантики вмісту. Все це сприяє використанню Tree-Net для побудови системи управління знаннями. Модель Web-контенту Tree-Net забезпечує зручні засоби навігації по навчальному контенту на базі WWW. Ієрархічні, бінарні і групові зв’язки між елементами контенту відповідним чином відображаються на елементах навігації. Таким чином користувач отримує широкі можливості для орієнтації і пошуку необхідної йому навчальної інформації і пояснень. Так, на основі груп реалізовано інтеграцію таких сучасних технологій побудови Інтернет-проектів як мітки і каталогізація контенту разом із семантичними технологіями моделювання предметної області, що надає розширені навігаційні можливості користувачам Web-ресурсу на базі Tree-Net. Різноманітні зв’язки елементів контенту міжпредметного і внутрішньопредметного характеру на базі Tree-Net дають можливість гнучко управляти навчальним контентом і моделювати специфічні області знань, визначаючи релевантну множину контенту, що відповідає інтересам студента. Модель Tree-Net є основою для розробки методів генерації персонального навчаючого середовища і динамічних навчальних курсів для підтримки безперервного навчання. Разом із іншими компонентами Tree-Net є складовою комплексу моделей для побудови Web-системи безперервного навчання [12]. Про поточні і попередні дослідження щодо розвитку і використання моделі Tree-Net інформується на сайті авторів [16]. Семантична модель навчального контенту Tree-Net практично застосована при побудові освітнього порталу [17]. Література1. Богданова И.Ф. Непрерывное образование в эпоху перехода к информационному обществу// Актуальные проблемы бизнес образования. Тез. докладов третьей Международной конференции, Минск 2004 – С . 35-39. http://sbmt.bsu.by/projects/Thesis06.pdf
2. Marshall, B., et al. Convergence of Knowledge Management and E-Learning: the GetSmart Experience. in JCDL. 2003. Houston. http://ai.bpa.arizona.edu/go/intranet/Publication/JCDL-2003-Marshall.pdf 3. Efimova L., Swaak J. Converging Knowledge Management, Training and e-learning: Scenarios to Make it Work. Journal of Universal Computer Science, vol. 9, no. 3 (2003), 571-578. https://doc.telin.nl/dsweb/Get/Document-30275/I-KNOW_Efimova_Swaak.pdf 4. Комов С. А. Корпоративные знания – как ими управлять? Журнал "Корпоративные системы", №3, 2005 http://www.management.com.ua/ims/ims108.html 5. Verna Allee. eLearning is not Knowledge Management. LiNE Zine. linezine.com http://www.linezine.com/2.1/features/vaenkm.htm 6. Гагарін О.О., Титенко С.В. Дослідження і аналіз методів та моделей інтелектуальних систем безперервного навчання // Наукові вісті НТУУ "КПІ". – 2007. – № 6(56). – С. 37-48. 7. Brusilovsky, P., Knapp, J. and Gamper, J. ‘Supporting teachers as content authors in intelligent educational systems’, Int. J. Knowledge and Learning, 2006, Vol. 2, Nos. 3/4, pp.191–215. 8. Семикин В.А. Семантическая модель контента образовательных электронных зданий. Автореферат на соискание … кандидата технических наук. Тюмень 2004. http://www.tmnlib.ru/resources/abstract/pdf/Semikin.pdf 9. Brusilovsky, P. Adaptive hypermedia, an attempt to analyze and generalize. In P. Brusilovsky, P. Kommers, & N. Streitz (Eds.), Multimedia, Hypermedia, and Virtual Reality (Lecture Notes in Computer Science, Vol. 1077). Berlin: Springer-Verlag, 288-304. 1996. 10. Brusilovsky, P. KnowledgeTree: A distributed architecture for adaptive e-learning. In: Proceedings of The Thirteenth International World Wide Web Conference, WWW 2004 (Alternate track papers and posters), New York, NY, 17-22 May, 2004, ACM Press, pp. 104-113. 2004. http://www.sis.pitt.edu/~peterb/papers/p641-brusilovsky.pdf 11. Титенко С.В., Гагарін О.О. FreshKnowledge – система управління навчальним Веб-контентом на семантичному рівні // VII международная конференция «Интеллектуальный анализ информации ИАИ-2007», Киев, 15-18 мая 2007г. : Сб. тр./ Ред. кол. : С.В. Сирота (гл.ред.) и др. – К.: Просвіта, 2007. – С. 342-352 12. Gagarin A., Tytenko S. Complex model of educational hypermedia environment for ongoing learning // Образование и виртуальность – 2007. Сборник научных трудов 11-й Международной конференции Украинской ассоциации дистанционного образования / Под общ. ред. В.А. Гребенюка, Др Киншука и В.В. Семенца.– Харьков-Ялта: УАДО, 2007.– С. 140-145 13. Гагарін О.О., Титенко С.В. Проблеми створення гіпертекстового навчаючого середовища // Вісник Східноукраїнського національного університету імені Володимира Даля №4 (110) 2007 Ч.2 - Луганськ 2007 - С. 6-15. 14. Титенко С.В., Гагарін О.О. Семантична модель знань для цілей організації контролю знань у навчальній системі. // Сборник трудов международной конференции «Интеллектуальный анализ информации-2006». – Київ: Просвіта, 2006. – С. 298-307. 15. Гагарин А.А., Луценко А.Н., Титенко С.В. Организация дистанционного обучения как информационный фактор реализации научно-технологической составляющей экономической безопасности государства // Экономическая безопасность государства и информационные технологии в ее обеспечении / под общ. ред. Г.К. Вороновского, И.В, Недина – К.:Знания Украины, 2005, стр. 608-619. 16. http://www.setlab.net Лабораторія СЕТ – Віртуальна лабораторія новітніх інформаційних технологій. Дослідження в області дистанційного навчання. 17. http://www.znannya.org Портал знань – портал дистанційного навчання, побудований на основі Tree-Net
Зверніть увагу на додаткові посиланняЯкщо вас цікавить...Головний розділКількість входів в цьому місяці : 10495 |
Приєднуйтесь!
Сторінки, близькі за змістом | ||||||||||||||||
|